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Abstract

Frankincense, the sap of trees in the Boswellia genus, has been a valuable commodity
throughout history, used in traditional medicines worldwide to treat neoplasia, fever,
gastrointestinal disorders, inflammation, and wounds. This resin contains many secondary
metabolites that vary depending on the species of origin. Nuclear magnetic resonance
spectroscopy (NMR) can be used to obtain unique spectra from biological samples, creating
a chemical “fingerprint” that encodes species-specific chemical information. Statistical
modelling algorithms such as partial least squares-discriminant analysis (PLS-DA) or random
forests (RF) can then be applied to these fingerprints to create predictive models. Such models
determine which spectral features represent the most significant differences between samples.

This study utilized 60 and 400 MHz nuclear magnetic resonance (NMR) spectroscopy to
obtain spectra from frankincense samples originating from nine different Boswellia species.
This data was used to produce a partial least squares discrimination analysis (PLS-DA) and
Random Forests (RF) models to classify withheld test data. These models were able to
classify Boswellia species, with 400 MHz models performing with the highest accuracy. Such
NMR methods are advantageous because they only require a crude sample and a robust
extraction method, making them independent of chromatography and unreliable ionization.
These models have various potential applications, including measuring the quality and purity
of commercial frankincense products and providing insights into the complex taxonomy of the

Boswellia genus based on unique secondary metabolites.
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1 — Literature Review

1.1 — Boswellia spp. and frankincense

1.1.1 — History of frankincense

Frankincense, also known as olibanum, has been a valuable commodity since the development
of early civilizations." This is likely due to its pleasant aroma and the simplicity of its harvest from
trees of the genus Boswellia (family Buseraceae).? The resin itself is secreted from scores in the
bark caused by animals, pests or humans.? The collected pieces are known as “tears” because
of their shape. Frankincense has been used for traditional medicine, perfumes, aromatherapy,
and religious ceremonies. As it was highly subject to trading, this commodity was available to
civilizations worldwide, such as Northern Africa, Egypt, and parts of the Middle East.3#>¢

Most commercial frankincense originates from the species Boswellia serrata and B. sacra
from which it is harvested via a wound made by a knife in the tree’s bark (Figure 1). The resin
that seeps from the wound is then collected and hardened.?

The resin has historically been used in traditional medicines around the world for the
treatment of neoplasia, fever, gastrointestinal disorders, inflammation, and wounds.”2° It can
be assumed that this research and the promise of natural medicine contribute to the recent
renewal of frankincense’s popularity. This both exacerbates its overharvest and emphasizes
the need to prevent it.2 This is supported in the literature, as extracts of Boswellia such as the
ethanolic fraction and essential oil, have been described as anti-inflammatory, antioxidative,

and antineoplastic.’>™¢



Figure 1. Images of Boswellia sacra Roxb. ex Colebr. A: An incision made in
the bark to reveal resin (courtesy of T. Walsh, RBG Kew); B: Bark peeling
from the trunk (courtesy of H. Pickering, RBG Kew).

Destructive harvesting, pests, and high demand for frankincense products are putting some
species of Boswellia at risk of extinction.2'27 As the trees are given less time to recover between
harvests to maximize profit, they slowly die. Over time, as the number of trees decreases, there
may no longer be enough to sustain the species. The decline in viable Boswellia population
may encourage the adulteration of frankincense products, as has been reported in extra virgin
olive oil.®

To prevent this from becoming prevalent, chemometrics can be used to establish
statistical models to determine the purity of a frankincense sample or even the species from
which it was harvested. With such safeguards, frankincense can be screened quickly using mass
spectrometry or nuclear magnetic resonance spectroscopy methods.
1.1.2 — Habitat and taxonomy
The distribution of the Boswellia genus is wide across the globe. This distribution may have

caused the misclassification of species by mere visual observation. Many different people were



discoverers of new Boswellia species, so it cannot be ruled out that overlap in classifications
arose from separation through space and time. This separation has caused confusion in the
naming of Boswellia spp., which has many synonyms. One constant, however, is that Boswellia
serrata Roxb. ex Colebr. remains the type for the genus, thus sometimes referred to as simply
Boswellia. The online plant database World Flora Online officially recognizes 20 species.™ In
contrast, the Plants of the World Online database lists 22, with outliers being B. occulta and
B. ruspoliana.”™

In the literature, there are many synonyms for Boswellia species. For example, B. glabra
Roxb. is a synonym for B. serrata and B. bricchettii is synonymous to Lanneo obovate, which is
not within the Boswellia genus.® Chemotaxonomy can be an alternative or supportive form of
classifications to support the use of chemical information as a guideline for naming.

Attempts have been made to clarify the obfuscated taxonomy of the Boswellia

genus using chemometrics.2'®7® These include using tandem gas chromatography-mass
spectrometry (GC-MS) to analyze the volatile compounds and organic extracts of oils, thin-layer
chromatography to assess phenolic compounds, and a novel approach using diatomite column
chromatography and mass spectrometry. This information will support efforts to produce a
robust method of analyzing commercial frankincense samples or other commercial products.
1.1.3 — Phytochemistry of Boswellia spp.
The biochemistry of frankincense has not been discussed at length in the literature. Therefore,
efforts to elucidate the driving factors of chemical differences between species are essential
in understanding these species. Existing research has focused on identifying which types of
compounds are present in various extraction conditions.

Frankincense resin of trees within the Boswellia genus consists of three major fractions.
The smallest of the fractions is the oil fraction, which comprises the small molecular weight
lipids such as monoterpenes. The next largest fraction is the water-soluble fraction, which

comprises mostly carbohydrates and gum (polysaccharide polymers).”



The largest fraction is the ethanolic extract, which is the most investigated of the

three. This fraction contains the rest of the terpenes, terpenoids, and fatty acids.?° Incensole
is included in this fraction, which is known to be a potential anti-inflammatory, anticancer,
and anti-HIV (human immunodeficiency virus) compound.’® The ethanolic fraction potentially
has clinical applications, demonstrating weak antioxidative potential and the ability to inhibit
lipoxygenase, reducing inflammation.™?' Moreover, this fraction contains boswellic acids, a
class of pentacyclic triterpenes that have garnered researchers’ interest in their potential
pharmacological activities (Section 1.1.3.2).”
1.1.3.1 — Terpenes and terpenoids in Boswellia spp.
Terpenes are organic compounds that are synthesized from isoprenyl 5-carbon (Cs) monomers
called isopentenyl pyrophosphate and dimethylallyl pyrophosphate (IPP and DMAPP
hereafter). Isoprene monomers can further be conjugated to form geranyl pyrophosphate
(Cio0), farnesyl pyrophosphate (Cis), geranylgeranyl pyrophosphate (Cy), and squalene
pyrophosphate (Cso). These long-chain unsaturated carbon compounds are produced from
the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways.??® The naming
convention of terpenes is determined by the number of carbons in its final structure.??

Subsequent transformations to these long-chain carbon compounds, such as cyclization
and oxidation/reduction, produce an extremely wide variety of terpene compounds. More
than 35 000 terpenes and terpenoids are known, making the group one the largest of the
natural product classes.??

A summary of compounds which are present in relatively high abundance in frankincense
samples is provided below (Table 1). These compounds were detected previously by analyzing
the organic-soluble portion of frankincense via vapour headspace GC-MS, superheated steam
extract, gas chromatography-flame ionization detection (GC-FID), and headspace solid-phase
microextraction (SPME). Most of these compounds belong to the terpenes, with some

presence of fatty acids.™ It is likely that, in an organic extraction of frankincense, some high-



concentration constituents such as a-pinene, B-ocimene, and camphene are detectable by

NMR.



Table 1. List of select abundant named compounds and compound classes known to be
found in frankincense extractions via various detection techniques."2%.23

Compound Class Compound Class
1,8-cineole monoterpene borneol monoterpene
monoterpene L . .
bornyl acetate esterp boswellic acids, oleanane  triterpenoids

boswellic acids, ursane
carvone

cis-piperitol

isopinocamphone
linalool

myrcene

p-cymen-8-ol

sabinene

trans-pinocarveol
verbenene
o-phellandrene-8-ol

a-thujene
B-cedrene
B-pinene
6-cadinene
oleic acid
arachidonic acid

triterpenoids
monoterpene

monoterpene
alcohol

pinane
monoterpene

monoterpene
monoterpene

monoterpene
alcohol

monoterpene

monoterpene
alcohol

monoterpene

monoterpene
alcohol

monoterpene
sesquiterpene
monoterpene
sesquiterpene
fatty acid
fatty acid

camphene
caryophyllene

d-verbenone

limonene
m-cymene

myrtenol

p-cymene

terpinen-4-ol

trans-verbenol
a-campholenal
a-pinene

a-thujone
B-ocimene
B-thujone
palmitoleic acid
lauric acid

monoterpene

sesquiterpene

monoterpenoid

monoterpene

monoterpene

monoterpene
alcohol

monoterpene

monoterpene
alcohol

monoterpene
alcohol

monoterpenoid
monoterpene

monoterpene

monoterpene

monoterpene
fatty acid
fatty acid



1.1.3.2 — Boswellic acids
It is known that frankincense samples of all species are predominantly comprised of aliphatic
terpene and terpenoid compounds such as mono-, di-, and triterpenoids (Table 1). Particular
attention has been paid to boswellic acids, triterpenes uniquely found in Boswellia. These
compounds are of interest because of their clinical relevance. Boswellic acids potentially have
cytotoxic, anticancer properties. A recent review revealed that several papers have been
published investigating the antimicrobial, anti-inflammatory (n=132), anti-neuropathology
(n=63), and anti-oxidant (n=25) effects.?*

Boswellic acids comprise compounds with one of two carbon scaffolds. These scaffolds,

ursane-type and oleanane-type, are based on the structures of ursolic and oleanolic acids.?%%

(A) )

HO HO

Figure 2. Representative structures of the boswellic acid scaffolds. A: ursolic
acid; B: oleanolic acid.??

1.2 — Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for various applications.
The most prevalent of these applications is the structural determination of pure compounds.
It operates on the premise that atoms with non-zero spins behave predictably in a strong,
uniform magnetic field. Using radio-frequency pulses at or near the resonant frequency of
these atoms, one can detect every chemical and magnetic environment of that particular atom.
This is done by measuring the bulk precession of spins for a period after the radio-frequency

pulse.?®



The most common form of NMR spectroscopy is the one-dimensional proton ("H) NMR
acquisition. In this simple experiment, a radio-frequency pulse at the proton Larmor frequency
generates a signal for every proton environment in an organic molecule. Many transients
are collected and added together before a Fourier Transform is applied, yielding a spectrum
encoding the Larmor precessional frequencies of measured protons. A chemical structure can
be elucidated based on the properties that peaks exhibit in the spectrum, such as multiplicity,
relative integration, and scalar coupling. Though this has been NMR’s traditional purpose, an
ensemble of compounds may also be measured simultaneously with no additional effort.?>2¢

NMR spectroscopy shows promise in supplementing traditional mass spectrometric
metabolomics methods as a tool for untargeted chemical profiling. It can generate a
“fingerprint” spectrum unique unique to a biological sample.?® These spectra are unique
because the chemical phenotype varies between biological samples, whether the species is

the same or different.

1.3 — Metabolomics

“The general aim of metabolomics is the qualitative and quantitative
analysis of all metabolites (the metabolome) present in an organism at

a specific time and under specific influence”

— Yuliyana et al.?

Metabolomics is traditionally performed using a chromatography-based mass spectrometry
method such as LC-MS.?® This method depends on column chromatography which has
drawbacks such as low throughput and column-based bias in separations. Mass spectrometry
may also require derivatization to detect small compounds or compounds that are difficult to
ionize reproducibly — an extra time-consuming step in methods development.?®

The ionizability of compounds in a sample depends heavily on their functionalization,
elements, and overall structure. This means that the detection of these compounds varies on

a per-compound basis rather than a property of the sample or sample preparation. Possible



errors in this method include missed features via poor ionization or misclassification due to
dual ionization, effectively halving the observed mass-to-charge ratio (m/Q). A common way
around this is by derivatization, where a robust chemical reaction is applied to the sample to
functionalize target compounds with a prosthetic group that is easily ionized by the instrument.
While this works for compounds known not to ionize well — such as amino acids — it is not a
reliable method to detect those one would not expect to see.3%3

Data repositories for metabolomics data contain spectra for hundreds of thousands of
metabolites. Some of these databases include the Human Metabolome Database (HMDB), the
MassBank of North America (MoNA), and the natural products database LOTUS.32333% A vast
majority of these databases consist of mass spectrometry data. For example, only 8.87% of
all spectra in HMDB are NMR spectra, and 5.83% of all compounds have an associated NMR
spectrum.3* From this, it can be seen that NMR metabolomics is a nascent field with a great
need for developing new methods.

1.3.1 — NMR metabolomics

When performing NMR metabolomics, a sample extraction must be performed using an
optimal solvent and method. These samples are then analyzed using the NMR instrument
without processing such as derivatization. The output from a standard 'H acquisition contains
spectral information for all detectable organic compounds in the sample. This data can be
analyzed to determine the peaks that drive statistical variance between sample treatments.
However, this information is often highly obfuscated and cannot solely be used to identify
compounds to which these peaks belong.

To solve this, other pulse sequences can be used post-analysis to determine which
compound a peak of interest may belong to. In addition to the aforementioned 'H
NMR sequence, the heteronuclear single quantum correlation-total correlation spectroscopy
experiment (hereafter HSQC-TOCSY) can provide this information. It encodes data that isolates

total spin systems within a molecule from the other molecules in the sample. This is because



it combines the TOCSY pulse —which maps all protons in a spin system — with the HSQC, which
maps all carbons to their attached protons. Thus, this two-dimensional method can be used to
identify such molecules within a biological metabolomics sample.?®

NMR methods can be quite more robust than that of mass spectrometry-based methods
like liquid-chromatography mass-spectrometry (hereafter LC-MS). It can take a snapshot of the
abundant compounds present in a sample with little effort and great reproducibility. It does
not depend on a separation system, making detection of all types of compounds dependent
only on extraction conditions such as solvent and temperature. This extraction method must
take the wide variety of organic compounds that may be present. Moreover, detection of any
size and class of compound is possible because NMR does not require ionization. Without the
need for derivatization, samples can go straight from extraction to the instrument.

Last, NMR spectra are highly reproducible. Where mass spectrometry can see variable
results from instrument to instrument, NMR data can be recreated, requiring only the same
field strength of NMR instruments.?” This requirement arises from the property of coupled
peaks retaining their coupling constant despite stronger magnetic fields. For example, doublet
peaks are spaced closer together in a 600 MHz spectrum than a 60 MHz spectrum.

In the literature, Kim et al. have attempted to characterize NMR-based methods for
plant metabolomics.?® Moreover, Sumner et al. have proposed a reporting standard for NMR
metabolomics data.?® The principles outlined in these previous works and others can be used as
a framework to develop a pipeline for producing fit-for-purpose methods that can be adapted
and validated for many other downstream uses.

A major setback of NMR spectroscopy is its sensitivity.3® Relative to mass spectrometry,
high concentrations of compounds are required to generate enough signals with the
instrument. However, some measures can be taken to improve the overall signal-to-noise ratio
(hereafter SNR) of low-concentration samples. For example, a 45° pulse over a 90° pulse with

a higher number of transients can be used. In this case, the 45° pulse is used to reduce the

10



relaxation time by one half-life, allowing for more transients to be collected in the same period
of time. Thus, SNR is reduced because the transients from which the baseline is averaged are
more numerous. Moreover, sensitivity can be improved greatly using a supercooled cryogenic
probe under a stronger magnetic field.>>* More NMR facilities contain instruments with these

capabilities as time passes, making this a promising solution.?®

1.4 — Statistical chemometrics

Chemometrics is the process of creating models from which a meaningful interpretation can
be made.?” Such models are created from data collected from various methods such as mass
spectrometry, NMR spectroscopy, spectrophotometry, and more.

Statistical models are produced considering nuanced differences between biological
samples to perform chemometrics. These differences are ranked based on their importance
by, for example, measuring the variance that a compound contributes to the data set.®®
Compounds can be ranked based on their variance and targeted for further analysis. The
statistical chemometric methods used in this study are principal component analysis, partial
least squares discriminant analysis, and Random Forests.

1.4.1 — Principal component analysis

Principal component analysis (PCA) is a method that reduces a complex set of data to a
collection of principal components (PCs) that describe features that give rise to the most
variance. While reducing the number of dimensions to consider, the major patterns remain,
allowing for simpler analysis and interpretation. The main goal of the PCA algorithm is to cluster
labels together while preserving variance. This constructs a simplified description of the data
Set.39’40’41

PCAis performed by finding the components within the data set with the highest degrees
of variance. The data is then recentered according to these components, and a series of

matrix transformations and projections are performed.*? The final metrics of the PCA are the
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scores and loadings. Scores describe the distribution of individual points, whereas the loadings
indicate the points that correlate the most with a particular principal component.

While the PCA is useful for visualizing data clustering, it cannot be used directly as a
prediction model. This is because the model abstracts class away during its transformations in
its effort to minimize co-variance and maximize variance.

1.4.2 — Regression-based classification - PLS-DA

Partial least squares discriminant analysis (PLS-DA) is a similar method to PCA, wherein a
“supervised” model is trained from a classified two-dimensional data set. The term supervised
refers to the process of providing class information to the model so that it may consider the
separation of actual classes. This differs from PCA, which does not consider the real class of
the data and instead focuses on the effect of the principal components. The process of training
a PLS-DA model involves preprocessing data, splitting data into training and testing sets, and
training with cross-validation and hyperparameter tuning to determine the number of principal
components to consider. Moreover, PLS-DA aims to explain the differences between classes
rather than between samples.*°

PLS-DA is often used to create models for metabolomics. These methods analyze and
compare the clustering of features in a dataset based on the variance of single features
between samples. In doing so, the model maximises co-variance, such that grouped data
remains highly correlated in the model. This can be the basis for deciding which compounds
to analyze further, using HSQC-TOCSY to determine its structure among those present in the
sample.*?

Furthermore, when trained with a sufficient size of data, PLS-DA models can be used
to predict which class an “unknown” compound belongs to by projecting it onto its latent

variables, determining which class it identifies the most with."
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1.4.3 — Ensemble-based classification - Random Forests

PLS-DA has the tendency to overfit data. Thus, a supervised ensemble method such as Random
Forests (RF) has been considered a new alternative model.?® This is because data pruning
reduces the probability of the model being dominated by the largest peaks in a spectrum. RF
models are trained by preprocessing data and then constructing trees with cross-validation to
determine the number of variables to include in each tree. The produced ensemble of decision
trees is what is used to perform predictions.**

This model functions by growing a forest of many decision trees, each of which is trained
on a different subset of data. These decision trees are then assessed using a test set, wherein
the trees “vote” which classification is best for the incoming data. The number of votes for
each class is counted, and the class with the most votes is considered the final prediction. This
method handles overfitting by limiting the number of variables used for each prediction. This

way, a handful of prominent variables cannot dominate the entire model.*

1.5 — Objective

This study aims to determine frankincense’s ability to be classified from its NMR spectrum
using PLS-DA and RF statistical models. Moreover, a comparison will be made regarding which
model performs better and their relative tradeoffs. The results of this study will also provide
valuable insights into the complex taxonomy of the Boswellia genus based on unique secondary

metabolites.

2 — Materials and Methods

2.1 — Frankincense sample material

Frankincense samples from different Boswellia spp. were obtained from a commercial vendor
(Apothecary’s Garden; Hamilton, ON, Canada). Samples purportedly originated from species
B. sacra, B. carterii, B. frereana, B. serrata, B. papyrifera, B. neglecta, B. rivae, B. elongata, and

B. dalzielii.
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2.2 — General materials

Both crystalline dimethyl terephthalate (DMTP) NMR reference standard and deuterated
DMSO (DMSO-ds 99.5% D) were purchased from Sigma-Aldrich (Oakville, ON, Canada). Aldrich
ColorSpec NMR tubes (7 in. Lx 5 mm diam., 0.38 mm wall; 400 MHz) were also purchased from
Sigma-Aldrich. Twist-lock 2 mL microcentrifuge screw-top and 1.7 mL snap-top microcentrifuge

tubes were purchased from VWR (Mississauga, ON).

2.3 — Sample preparation

Frankincense samples were chosen randomly, ensuring no samples had visual evidence of
debris contamination (e.g. wood, dirt). Each sample, taken as an individual tear, was then
fragmented into small pieces by dropping a mortar 1 inch above the table onto the sample and
wrapping it in weighing paper. Fragments were then randomly selected and placed into a 2
mL screw-top microcentrifuge tube so that the total weight of the sample was approximately

0.100 g £ 0.01 g. Samples not immediately used were stored in the dark at room temperature.

2.4 — Extraction

2.4.1 — Preparation of the standard extraction solvent

The volume of DMSO-ds was calculated via its density, and the mass required was subsequently
determined. To do so, a 50-gram bottle of DMSO-ds was poured into a tared 100 mL beaker.
This beaker was then parafilmed to reduce exposure to water. The mass was taken, and the
original bottle was dried of remaining solvent residues. Last, the solvent was decanted back
into the bottle, and the mass of the residue in the beaker was taken and subtracted from the
final mass. This mass was translated to volume using the recorded density of 1.190 g/cm? and
multiplied by 5 mg to determine the mass of DMTP to dissolve. The DMTP was dissolved into

the bottle and marked with its concentration.
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2.4.2 — Determination of extraction conditions

Many trials were performed to determine the extraction method for this experiment. Each
experimental trial was measured at 5, 20, 60, and 120 minutes (5 minutes omitted for trials 3
onward). Biological samples used for this experiment originated from tears of B. sacra.

Extraction trials #1 and #2 were performed under 3 mL of solvent (DMSO-dg) in 13mm
x 100mm glass culture tubes. These extractions resulted in cloudy suspensions, so a decision
was made to use microcentrifuge tubes to enable centrifugation of the samples. Thus, trial #3
utilized 1.5 mL snap-lock microcentrifuge tubes, and trials #4 and #5 utilized 2 mL screw-top
microcentrifuge tubes.

Each extraction was sampled at each time point by taking a 700 pL aliquot and filtering it
into a clean NMR tube. The sample was left to extract until the final time when it was removed.
Asthe 1.5 mL trial (#3) could not account for this, 500 pL aliquots were used. This, however, was
not sufficient for the instrument, and this trial was not used. The same was true for the 2 mL
trial (#4), as there was insufficient solvent for the final trial (600 puL). An alternative was chosen
so as not to compromise the volume of the extraction solvent. This final trial (#5) used 500 uL
aliqguots which were diluted by DMSO-d¢ in a ratio of 1:1. This resulted in two-fold dilutions for
all samples with a total volume of 1.00 mL. These samples were centrifuged, and an 800 uL
aliquot of these solutions was used for NMR analysis.

Data was analyzed by plotting the integration of prominent peaks for each time-point
spectrum after normalization of the DMTP peak area at 8.0678 ppm to 50 000 and processed
according to section 2.5.4. These integrations were taken from peaks at 6 0.79, 1.23. 1.61, 2.02,
2.48, and 5.42 ppm and plotted.

2.4.3 — Extraction of frankincense samples
A cotton filter was prepared for each NMR tube using a 5-inch glass Pasteur pipette with a small
wad of cotton packed in the taper. The small end of the pipette was then placed inside an NMR

tube for later use as a funnel.
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A pre-weighed frankincense sample was added to a 2 mL screw-top microcentrifuge
tube. Added to this tube was 1.8 mL of DMSO-de. The sample was extracted for one hour at
room temperature in a sonicator bath. Samples were fixed in the bath using a floating tube rack
to ensure each sample was fixed at the same height. A retort stand with an attached three-
pronged clamp was also used to hold the rack in the center of the bath to ensure that it did not
contact the sides of the sonic bath. After extraction, each sample was centrifugated at 13,000
x g for 1 minute, gathering any remaining particulate into a pellet at the bottom of the tube.
Then, 700 uL of the transparent supernatant was transferred using a micropipette into a clean

7-inch NMR tube through the cotton filter.

2.5 — NMR spectroscopy
2.5.1 — Determination of minimum number of transients
An arrayed experiment of eight consecutive acquisitions was performed using an array of 2,
4, 8, 16, 32, 64, 128, and 256 transients with all other parameters identical to those in
Section 2.5.2. This data was subsequently processed as per Section 2.5.4.
2.5.2 — NMR data acquisition parameters
All 60 MHz 1-D "H NMR spectra 1-D 'H NMR spectra were acquired at 25 °C over a spectral width
of 540 Hz between 0 and 9 ppm. A relaxation delay of 1 second was used between transients.
Time elapsed per transient was 5.96 seconds, yielding 2048 complex points, and 64 transients
were collected from each sample.

All 400 MHz spectral data for this study was collected using a Varian MercuryPlus 400
MHz NMR instrument (Varian, Inc. Palo Alto, CA, USA), which uses a 400 MHz automated triple-
broadband probe and pulse field gradient generator (1H at 400.14 MHz). Varian’s proprietary
desktop application VnmrJ) v2.2—distributed for Red Hat Enterprise Linux v5.1—was used to
control the instrument and configure experimental parameters. Spectra were acquired at 25
°C over a spectral width of 4001.6 Hz, covering a range of 6 between -1.0 and 10.0 ppm with

an observation pulse length of 5.90 us (45°). Each sample was not spun, and the instrument
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was maintained at 25 °C. A relaxation delay of 1 second was used between transients. The total
time elapsed per transient was 4.094 seconds which yielded 16,384 complex points. Sixty-four
transients were collected from each sample.

2.5.3 — Determination of instrumental detection limits

To calculate the limit of detection and limit of quantification (hereafter LoD and LoQ), a dilution
series of DMTP in DMSO-ds was prepared and analyzed. A 2.575 mM stock solution of DMTP
was prepared as per Section 2.4.1. Aliquots of this stock solution were added to pure DMSO-de
and subsequently diluted in a ratio of 1:99 to produce a range of solutions from 0.002575 mM
to 0.02575 mM. SNR was calculated, plotted using MNova, and correlated via concentration to
peak intensity.

2.5.4 — NMR spectral processing

All NMR spectra were processed using the MNova software v15.0.0-34764 (Mestrelab
Research) and its “stack” function. The processing performed consisted of per-spectrum
automatic and manual phasing, automatic baseline correction via Whittaker Smoothing, and
an apodization of 1 Hz.

The water peak region from 3.64 ppm to 2.93 ppm was removed from the 60 MHz spectra
due to its large variance in intensity.

Spectra were referenced to the solvent peak of DMSO-Dg, and the reference peak at 8.14
ppm was used to normalize via peak-area, which was set to 50 000. MNova was then used to
bin the spectra with a size of 0.01 ppm with the sum method.

For the integration of series experiments such as the LoD/LoQ determination
(Section 2.5.3), MNova’s data array and stacking features were used. This data was plotted and

visualized using the R package ggplot2 (v3.4.4).%°
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2.6 — Statistical analysis
All data analysis and processing was performed using R version 4.3.2 in R Studio version
2023.12.1+402 on MacOS (M3). All pseudorandom operations were seeded with the decimal
number 14 (set.seed(14)).
2.6.1 — Data preprocessing
Data was centred and log-transformed using the R standard library, then Pareto scaled using
the MetabolAnalyze (v1.3.1) R package.*® Data sets were prepared for raw, log-transformed,
and log-centered-Pareto scaled data. Data was then split into training and testing sets by
randomly subtracting two samples from each species, forming the test set. The resultant data
sets comprised 500 spectral bins as columns and 61 sample spectra as rows.
2.6.2 — Exploratory data visualization
Principal component analysis (PCA) scores plots were prepared using the prcomp function in
the stats R package.*” The plots were generated using ggplot2 and ggfortify (v0.4.16).%®
2.6.3 — Preparation of models
PLS-DA models were produced using the caret R package, which utilizes the pls (v2.8-3) R
package.*® Models were generated from the log-transformed data set, and a confusion matrix
was produced using ggplot2.

RF models were also produced using the caret package, which uses the randomForests
(v4.7-1.1) package for RF implementations.*9>°

Data (N=61) was split into training (n=43) and testing sets (n=18) by drawing two spectra
randomly from each species group and relegating them to the test set. For both model types,
a fit tune length of 20 principal components (for PLS-DA) or number of variables (mtry, for RF)
was used alongside 10-repeat, 10-fold cross-validation. Models were optimized by maximizing
Cohen’s Kappa metric.> The efficiency of the models was evaluated using confusion matrices

from the test set predictions.
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3 — Results and Discussion

3.1 — Determination of experimental parameters

An array experiment determined the number of transients that accomplished a good signal-to-
noise while minimizing the time spent for each acquisition. In this experiment, the transients
were arrayed from 2 to 256, with each step calculated as 2™. The generated spectra were
inspected visually, and it was decided that 64 transients (approximately 5-minute duration)
were sufficient to see strong and distinct peaks in Boswellia sample spectra. To further

characterize this, the LoD and LoQ metrics were calculated.

(A)

ppm

(B)

AT

8 6 4 2 0

Figure 3. Example NMR spectra taken from B. sacra at 60 MHz (A) and at
400 MHz (B).

To calculate LoD and LoQ, another experiment wherein a series of dilutions ranging from 0.0026
mM to 0.02575 mM as per Section 2.5.3 was analyzed. The following is calculated for the 400
MHz data set. The SNR plot yielded a regression fit of Ysnr = 1244.5x — 0.43. These linear

regressions were then used as a system of equations to solve peak height for specific values
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of SNR. According to the IUPAC guidelines for determining LoD and LoQ, the concentration
required to yield an SNR of 3 and 10, respectively, was used to determine the intensity
corresponding to this metric. These were then used to calculate the intensity for the same
concentration. The intensity plot yielded a regression fit of Yy, = 2357.8x — 1.47.

3 +0.431
[DMTP] = 2227 0.00276 mM
1244.5

intensity = 2357.8(0.00276) — 1.47 ~ 5.03

According to these calculations, all values below 1.833 should not be considered observations.
The 400 MHz LoQ was calculated similarly to yield an intensity limit of 5.547. The

calculated values are summarized below (Table 2).

Table 2. Summary of calculated values for LoD and LoQ.

60 MHz 400 MHz
LoD LoQ LoD LoQ
SNR Fit y, = 134.62 — 6.01 y, = 1244.52 — 0.4314
Intensity Fit y, = 29.73xz — 0.202 y, = 2357.8x — 1.469
SNR 3 10 3 10
[DMTP] (mM) 0.11 0.34 0.0028 0.0084
Intensity 8.49 40.2 5.03 18.3

The limit of quantification is reported here, as it is an important metric to consider for any
robust method. However, it is not taken into consideration further in this report.

3.1.1 — Extraction method

The extraction method was refined over many experimental trials, where the extraction
efficacy was assessed. The first and second trials utilized 3 mL of solvent per extraction in a glass
culture tube. Due to the high amount of solvent that would be required using this method,
and the inaccessibility of centrifuging glass culture tubes, these trials were discarded. Thus, the
next trial was conducted using 1.5 mL microcentrifuge tubes. Using 1.5 mL of solvent did not

allow sufficient quantities of extract for NMR analysis (0.5 mL x 3 aliquots). Next, 2.0 mL tubes
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were used with 1.8 mL of solvent, allowing for sufficient aliquots of 700 pL, however, the final
aliguot was insufficient. The final protocol involved taking 350 uL of solvent and diluting it in
350 pl of standardized solvent. Since the extractions were uniformly diluted, the experimental
concentration is effectively one-half of the real concentration. A plot of this data reveals that

one hour of extraction is sufficient for a wide representation of compounds in the sample

(Figure 4).
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Figure 4. Scatterplots of the intensity of separate peaks at different time intervals of
extraction. Chemical shift of analyzed peaks: A, 5.42 ppm; B, 2.48 ppm, C, 2.02
ppm; D, 1.61 ppm; E, 1.23 ppm; F, 0.79 ppm.

3.2 — Statistical models

3.2.1 — Principal component analysis

Principal component analysis was used for the preliminary assessment of data clustering.
Using only standard preprocessing consisting of data centring, PCA scores plots for the

400 MHz data exhibit a large amount of overlap with much of the variance explained by the

first two principal components (64.779%) (Figure 5). This high percentage of variance likely

depends on the model, which is highly dependent on peak intensity. Without scaling, the

strongest peaks are considered more often than the weakest ones.
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Figure 5. PCA scores plots for centred 400 MHz data. Ellipses encompass
the 95% confidence interval.

Pareto scaling is a method that can be used to diminish the influence of high-intensity peaks
in an NMR data set. In doing so, the statistical model becomes better at training using more
subtle features than only the strongest peaks. It is performed by scaling each measurement
by the square root of the standard deviation such that I, = /0 - I,,;;, Where | stands for a
single value.®?

This transformation is typically performed for NMR PLS-DA models because they are

highly dependent on variations in peak intensity. The scaled data was used to generate PCA
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scores plots (Figure 6) and (Figure 7). In this model, the first two principal components did
not represent most of the variance in the data, totalling 25.97%. All species exhibit sufficient
clustering, with the exception of B. rivae, which is highly variant. Despite this, Pareto scaling
and centring will likely improve the accuracy of subsequent PLS-DA models by allowing smaller

but highly variant peaks to come through.>?
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Figure 6. PCA scores plots for centered and Pareto-scaled 60 MHz data.
Ellipses encompass the 95% confidence interval.

Preliminary analysis of the 60 MHz PCA plots shows that there is a high degree of overlap in the
clusters. This is potentially an early sign that further classification models will have difficulty
differentiating between the most important features in an unknown spectrum. This is likely due
to the low resolution of the 60 MHz spectra. Since most of the spectral information is focused

around the 6 0to 3 ppm, peak overlap likely conceals smaller peaks which may vary significantly
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between spectra. Possible solutions for this include sample spinning and shimming. However,

the benchtop instrument used in this study did not have these capabilities.
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Figure 7. PCA scores plots for centered and Pareto-scaled 400 MHz data.
Ellipses circumscribe the 95% confidence interval.

These 400 MHz PCA scores plots show highly discriminated clustering between species classes
within the first three PCs (which represent 69.98% of the variance). This indicates a high
likelihood that a subsequent PLS-DA model can classify test data correctly. This shows promise
moving forward in producing prediction models.

3.2.2 — Partial least squares discriminant analysis

For this study, data with nine classes corresponding to Boswellia species was used to produce

PLS-DA models. In turn, the model can be used to classify an “unknown” or withheld sample
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as either B. carterii, B. dalzelii, B. elongata, B. frereana, B. neglecta, B. papyrifera, B. rivae, B.
sacra, or B. serrata.

The PLS-DA model generated from 400 MHz data required consideration of 13
components to reach the optimal Cohen’s Kappa value within a limit of 15 components
analyzed (Figure 8). The 60 MHz model required 10 components. Cohen’s Kappa metric
evaluates the model’s accuracy while accounting for the chance that a correct classification is
made randomly.®' This metric is particularly useful for prediction models, as it considers each

prediction individually.
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Figure 8. Plot of Cohen’s Kappa value against number of components considered
when training PLS-DA models. A: 60 MHz, B: 400 MHz.

As discussed previously, PLS-DA models have a high tendency to overfit data.*® A model is

likely to be overfitting when it performs well in classifying training data but fails to correctly
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classify testing data with full accuracy.™ This typically occurs for several reasons. One possible
reason is the use of a high-dimensional data with many variables, such as a data set consisting
of many spectral bins. This effect can be minimized by finding a binning width that does not
hide potentially significant features while also reducing the dimensionality of the dataset.
Predictions using both 60 and 400 MHz data are visualized using a confusion matrix,

where each cell represents the number of classifications made in that category (Figure 9).
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Figure 9. Performance confusion matrices of PLS-DA models generated from 60 and
400 MHz spectra. A: 60 MHz training-set predictions; B: 60 MHz test-set predictions;
C: 400 MHz training-set predictions; D: 400 MHz test-set predictions. Green cells
represent correct predictions.
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A summary of test set prediction results is available below (Table 3).

Table 3. Performance metrics for test set prediction using PLS-DA

models.
60 MHz 400 MHz
Accuracy 0.444 0.889
Cohen’s Kappa 0.375 0.875
Specificity 0.976 0.980

The 60 and 400 MHz PLS-DA models showed perfect accuracy when predicting the class of
training-set data as a control. However, test-set prediction results vary greatly, with particularly
poor results from the 60 MHz model. The 60 MHz model had a 44.4% accuracy with 8 of 18
correct class predictions. Despite this performance, the 400 MHz model showed an accuracy of
88.9%. This shows promise for the ability of Boswellia species to be classified by the chemical
profile of its frankincense using 400 MHz NMR data. However, overfitting was still present to
a great degree in the 60 MHz models.

Profuse overfitting was avoided in the 400 by using 10-fold 10 repeats cross-validation
during training, enabling the resultant model to classify over 80% correctly (Table 3).

A model that reduces overfitting more strongly should be used to move forward. Thus,
Random Forests models were produced from these data.
3.2.3 — Random Forests analysis
The RF training algorithm works on the premise of generating many smaller decision trees
using subsets of data. Therefore, the training process aims to determine the ideal number
of variables to include in each tree. The number of variables and iterations needed to select
this model by optimizing Cohen’s Kappa by choosing varying numbers of selected variables

(Figure 10).
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Figure 10. Plot of Cohen’s Kappa value against number of components considered
when training and cross-validating RF models. A: 60 MHz, B: 400 MHz.

As was done with the PLS-DA models, the ability of the RF model to predict its own training
data and the testing set was assessed. The 60 MHz RF model struggled with classifying new
spectra, with an accuracy of 38.9%. Just as in the PLS-DA model, this may be because important
spectral features are being covered due to low spectral resolution.

RF models generated from the 400 MHz spectra demonstrated 100% accuracy when first
re-predicting the species of the training set. Moreover, when applied to the test data, the same
model can make accurate predictions 94.4% of the time. This indicates that there are no major
signs of overfitting in this model. The metrics of the final selected model are summarized below

(Table 4).
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Table 4. Number of variables required per decision tree and model
performance metrics of generated Random Forests models for 60 and
400 MHz spectra.

60 MHz 400 MHz
Variables 63 67
Iterations 9 9
Prediction Accuracy 0.389 0.944
Cohen’s Kappa 0.313 0.938
Specificity 0.949 0.976

Predictions were made by applying training and test data to the RF model are also represented
by a confusion matrix (Figure 11).

As demonstrated before with the PLS-DA model, the 400 MHz model had significantly
higher accuracy and specificity measurements. The 60 MHz model classified 7 of 18 predictions
correctly, and the 400 MHz model correctly classified 17 of 18 predictions. Based on the
number of correct predictions and taking into consideration the Cohen’s Kappa score of 1 for
the RF model, Random Forests is a promising algorithm to use for the classification of unknown

Boswellia samples.
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Figure 11. Performance confusion matrices of RF models generated from 60 and 400
MHz spectra. A: 60 MHz training-set predictions; B: 60 MHz test-set predictions; C:
400 MHz training-set predictions; D: 400 MHz test-set predictions. Green cells

represent correct predictions.
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3.3 — VIP analysis

VIP analysis can aid in selecting compounds to elucidate further and determine which
compounds give rise to variance in the data set. A summary of VIPs found by the RF models
is provided below. In the extension of this study, an HSQC-TOCSY NMR experiment can map
cross-peaks found at the location of these VIP spectral bins to determine the structure of the

compound that gives rise to the peak.

Table 5. Summary of VIP spectral bins and % importance (imp.) from 60 and
400 MHz RF models.

60 MHz 400 MHz
ppm % imp. ppm % imp.
5.11 100.00 7.13 100.00
5.17 97.33 7.09 87.40
5.15 95.37 3.99 77.47
2.17 94.53 6.84 76.82
5.12 94.38 3.72 76.55
5.36 91.35 4.17 74.68
1.36 87.42 3.97 71.46
5.16 84.83 3.97 70.23
5.10 77.45 4.27 67.32
5.13 76.92 6.93 65.53

3.4 — Comparison between 60 and 400 MHz models
When comparing the accuracy between 60 and 400 MHz models, it is clear that the higher-
strength magnet performs better when classifying test data. The 60 MHz PLS-DA model
performed with less than half the accuracy of its counterpart. Moreover, the 60 MHz RF model
performed with an accuracy of just over 40% of the 400 MHz model. The gap between these
two instruments is quite clear. The 400 MHz NMR is viable for creating a predictive model
sufficient to extend research into this topic.

It can be argued, however, that the cost difference between the instruments justifies its

potentially high throughput analysis of frankincense samples. It is possible that the inability
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of the 60 MHz model to make strong predictions arises from the number of spectra used for
training. With more spectra, the confidence of the model would increase. Moreover, various
different types of preprocessing could be used for the spectra, in addition to or instead of

Pareto scaling and centring.

4 — Conclusion

NMR spectra collected from frankincense originating from 9 Boswellia species were used to
build chemometric models for classifying unknown spectra by predictions. Different NMR field
strengths were compared, finding that 400 MHz data is more valuable for constructing these
models. Despite this, it may be possible to increase the confidence of both models using a
larger number of spectra in the training set.

This study demonstrated that it is possible to predict the species of origin for a Boswellia
frankincense sample using statistical models; in particular, partial least squares discriminant
analysis and Random Forests algorithms. Models produced from 400 MHz NMR performed
well, with high accuracy and Cohen’s Kappa values. Of the two models trained by 400 MHz data,
the Random Forests model performed the best, boasting the highest accuracy in predicting

species of origin for the withheld test set spectra.

4.1 — Future directions
Using the preliminary findings from this study, models trained from larger datasets should also
be tested. Scaling up these models lends to a higher statistical power for that model, which
would enable the end-user to be more confident in the accuracy of the predictions. Moreover,
it is also important to consider the precision of these models by conducting trials in which a
model is trained on a larger data set numerous times and assessing the ability of the model to
predict the same result each time.

Moreover, HSQC-TOCSY NMR experiments can be used to map the chemical structure of

VIP compounds to species to determine which compounds are particularly unique to certain
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species. This will further help produce a metric by which the chemotaxonomy of the Boswellia

genus can abide.
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